Перевод: с русского на английский

с английского на русский

режим преобразования

  • 1 режим преобразования

     (Direct or Indirect)
     Режим преобразования (прямой или непрямой)
      Принцип, в соответствии с которым сенсор воспринимает необходимую информацию от материала. В целом, определяет способность сигнала сенсора обеспечить информацию о свойствах материала или его состоянии.

    Russian-English dictionary of Nanotechnology > режим преобразования

  • 2 режим преобразования цветов между цветовыми пространствами

    1. saturation intent
    2. rendering intent
    3. relative colorimetric intent
    4. perceptual intent
    5. intent
    6. absolute colorimetric intent

     

    режим преобразования цветов между цветовыми пространствами
    Если необходимо преобразовать изображение из одного цветового пространства в другое (при условии, что цветовой охват этих пространств не совпадает), режим преобразования определяет, какие характеристики цвета будут сохранены ценой потери других: оттенок, насыщенность, яркость, баланс белого.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > режим преобразования цветов между цветовыми пространствами

  • 3 режим туннелирования (режим преобразования протоколов - один сетевой протокол инкапсулируется в другой)

    Telecommunications: tunnel mode

    Универсальный русско-английский словарь > режим туннелирования (режим преобразования протоколов - один сетевой протокол инкапсулируется в другой)

  • 4 режим туннелирования

    1) Telecommunications: (режим преобразования протоколов - один сетевой протокол инкапсулируется в другой) tunnel mode
    2) Network technologies: tunnelling mode

    Универсальный русско-английский словарь > режим туннелирования

  • 5 режим импульсного преобразования (в источниках питания)

    1. switching mode

     

    режим импульсного преобразования (в источниках питания)

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Русско-английский словарь нормативно-технической терминологии > режим импульсного преобразования (в источниках питания)

  • 6 режим прямого преобразования энергии

    1. direct energy conversion operation

     

    режим прямого преобразования энергии

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Русско-английский словарь нормативно-технической терминологии > режим прямого преобразования энергии

  • 7 режим реальной (абсолютной) адресации

    1. real address mode

     

    режим реальной (абсолютной) адресации
    Режим работы процессора, при котором отключены средства преобразования виртуальных адресов в физические.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > режим реальной (абсолютной) адресации

  • 8 режим ввода

    1. input mode

     

    режим ввода
    Способ ввода данных. Различают ввод отдельными словами, блоками (записями), потоковый, ввод, управляемый данными, списком данных, ввод с преобразованием данных и без преобразования.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > режим ввода

  • 9 режим импульсного преобразования

    Универсальный русско-английский словарь > режим импульсного преобразования

  • 10 режим прямого преобразования энергии

    Универсальный русско-английский словарь > режим прямого преобразования энергии

  • 11 режим импульсного преобразования

    Русско-английский политехнический словарь > режим импульсного преобразования

  • 12 режим прямого преобразования энергии

    Русско-английский словарь по электроэнергетике > режим прямого преобразования энергии

  • 13 упорядоченный режим оперативного управления

    1. ordered control mode

     

    упорядоченный режим оперативного управления
    Узел инициирует передачу преобразования меток только после получения преобразования меток от узла нисходящего потока (МСЭ-T G.7713.3/ Y.1704.3).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    Русско-английский словарь нормативно-технической терминологии > упорядоченный режим оперативного управления

  • 14 CV

    Англо-русский словарь промышленной и научной лексики > CV

  • 15 transduction mode

     (Direct or Indirect)
     Режим преобразования (прямой или непрямой)
      Принцип, в соответствии с которым сенсор воспринимает необходимую информацию от материала. В целом, определяет способность сигнала сенсора обеспечить информацию о свойствах материала или его состоянии.

    Russian-English dictionary of Nanotechnology > transduction mode

  • 16 transformation feature mode

    Англо-русский словарь промышленной и научной лексики > transformation feature mode

  • 17 байпас (в источнике бесперебойного питания)

    1. bypass
    2. by-pass

     

    байпас
    1. Режим работы источника бесперебойного питания (ИБП) в котором вход ИБП напрямую или через корректирующие и фильтрующие цепи соединен с выходом ИБП. В таком режиме ИБП практически не способен влиять на качество выходного напряжения. В режим байпаса ИБП переводят либо принудительно с панели управления, либо ИБП переходит в этот режим самостоятельно при перегрузке или неисправности.

    2. Часть схемы ИБП, обеспечивающая работу режима байпас.
    Различают электронный (статический байпас) и механической (сервисный байпас). Электронный байпас защищает нагрузку ИБП от перегрузки, а оборудование от отключения питания при аварии в ИБП. Механический байпас предназначен для отключения ИБП от сети при обслуживании без отключения защищаемого оборудования.
    [ http://www.radistr.ru/misc/document423.phtml]

    EN

    by-pass
    Functional UPS module that connects the load of an On-Line UPS directly to mains in case of overload or UPS failure.
    [ http://www.upsonnet.com/UPS-Glossary/]

    0423

    Байпас в ИБП с двойным преобразованием

     

    0424
    Схема байпаса

    Байпас является обязательным элементом ИБП двойного преобразования большой и средней мощности.
    Байпас предназначен для соединения выхода ИБП (т. е. нагрузки) с входом ИБП (т. е. с питающей сетью), минуя схему ИБП.
    Байпас представляет собой комбинированное электронно-механическое устрой­ство, состоящее из так называемого статического байпаса и ручного (механическо­го,т. е. контактного) байпаса.

    Статический байпас - это ключ из встречно-паралельно включенных тиристоров. Включение (переход в режим Байпас) и отключение ключа осуществляется автоматически от системы управления ИБП при возникновении перегрузки или при разряде батарей, а также при переходе ИБП в экономичный режим работы. При коммутации байпаса напряжение инвертора синхронизировано с напряжением на входе байпаса (т. е. с напряжением питающей сети), что позволяет переключать нагрузку с инвертора на байпас и обратно «без разрыва синусоиды».



    Используется также термин автоматический байпас.
    В некоторых случаях байпас применяют при первом включении оборудования, когда пусковая мощность нагрузки превышает мощность ИБП.

    Ручной (механический, т. е. контактный) байпас представляет собой контактный выключатель нагрузки, шунтирующий статический байпас. Он предназначен для вывода ИБП из работы со снятием напряжения с элементов ИБП. При включенном ручном байпасе питание нагрузки осуществляется через цепь «вход байпаса-ручной байпас-выход ИБП». Остальные элементы ИБП: выпрямитель, инвертор, аккумуляторная батарея (АБ), ста­тический байпас — на время включения ручного байпаса могут быть обесточены (отключены от сетевого питания и нагрузки) для ремонта, регулировок, осмотров и т. д.
    Об отключении АБ можно говорить с некоторой натяжкой, поскольку АБ в заряжен­ном состоянии является мощным источником постоянного напряжения, пред­ставляющим опасность для обслуживающего персонала. По классификации «Меж­отраслевых правил по охране труда (правила безопасности) при эксплуатации элек­троустановок» работы с АБ следует относить к виду работ с частичным снятием на­пряжения. При необходимости замены аккумуляторов АБ ИБП переводят на руч­ной байпас, специальным инструментом разделяют АБ на отдельные аккумуля­торы, после чего опасность поражения электрическим током устраняется.

    При работе в режиме Байпас ИБП не имеет возможно­сти обеспечивать бесперебойное питание потребителей. Такой режим должен сопровождаться административно-техническими мероприятиями для исключения нежелательных последствий для потребителей. Самая простая мера — проведение профилактических и ремонтных ра­бот в то время, когда потребители не работают.

    Таким образом байпас позволяет:

    • отключать ИБП от нагрузки на время проведения ремонта и регулировок, продолжая питать нагрузку от питающей сети, а поокончания ремонта вновь подключать нагрузку к ИБП,
    • переключать нагрузку с инвертора на байпас при возникновении перегрузок, ко­ротких замыканий на выходе ИБП, при разряде аккумуляторной батареи;
    • переключать нагрузку с инвертора на байпас при нормальном качестве электроэнергии в питаю­щей сети, что позволяет уменьшить потери электроэнергии в ИБП (экономичный режим работы).

    [ http://electromaster.ru/modules/myarticles/article.php?storyid=365 с изменениями, а также http://market.yandex.ru/faq.xml?CAT_ID=969705&hid=91082#Hc0m8v096s7a9itBy-pass]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > байпас (в источнике бесперебойного питания)

  • 18 трехфазный источник бесперебойного питания (ИБП)

    1. three-phase UPS

     

    трехфазный ИБП
    -
    [Интент]


    Глава 7. Трехфазные ИБП

    ... ИБП большой мощности (начиная примерно с 10 кВА) как правило предназначены для подключения к трехфазной электрической сети. Диапазон мощностей 8-25 кВА – переходный. Для такой мощности делают чисто однофазные ИБП, чисто трехфазные ИБП и ИБП с трехфазным входом и однофазным выходом. Все ИБП, начиная примерно с 30 кВА имеют трехфазный вход и трехфазный выход. Трехфазные ИБП имеют и другое преимущество перед однофазными ИБП. Они эффективно разгружают нейтральный провод от гармоник тока и способствуют более безопасной и надежной работе больших компьютерных систем. Эти вопросы рассмотрены в разделе "Особенности трехфазных источников бесперебойного питания" главы 8. Трехфазные ИБП строятся обычно по схеме с двойным преобразованием энергии. Поэтому в этой главе мы будем рассматривать только эту схему, несмотря на то, что имеются трехфазные ИБП, построенные по схеме, похожей на ИБП, взаимодействующий с сетью.

    Схема трехфазного ИБП с двойным преобразованием энергии приведена на рисунке 18.

    4929
    Рис.18. Трехфазный ИБП с двойным преобразованием энергии

    Как видно, этот ИБП не имеет почти никаких отличий на уровне блок-схемы, за исключением наличия трех фаз. Для того, чтобы увидеть отличия от однофазного ИБП с двойным преобразованием, нам придется (почти впервые в этой книге) несколько подробнее рассмотреть элементы ИБП. Мы будем проводить это рассмотрение, ориентируясь на традиционную технологию. В некоторых случаях будут отмечаться схемные особенности, позволяющие улучшить характеристики.

    Выпрямитель

    Слева на рис 18. – входная электрическая сеть. Она включает пять проводов: три фазных, нейтраль и землю. Между сетью и ИБП – предохранители (плавкие или автоматические). Они позволяют защитить сеть от аварии ИБП. Выпрямитель в этой схеме – регулируемый тиристорный. Управляющая им схема изменяет время (долю периода синусоиды), в течение которого тиристоры открыты, т.е. выпрямляют сетевое напряжение. Чем большая мощность нужна для работы ИБП, тем дольше открыты тиристоры. Если батарея ИБП заряжена, на выходе выпрямителя поддерживается стабилизированное напряжение постоянного тока, независимо от нвеличины напряжения в сети и мощности нагрузки. Если батарея требует зарядки, то выпрямитель регулирует напряжение так, чтобы в батарею тек ток заданной величины.

    Такой выпрямитель называется шести-импульсным, потому, что за полный цикл трехфазной электрической сети он выпрямляет 6 полупериодов сингусоиды (по два в каждой из фаз). Поэтому в цепи постоянного тока возникает 6 импульсов тока (и напряжения) за каждый цикл трехфазной сети. Кроме того, во входной электрической сети также возникают 6 импульсов тока, которые могут вызвать гармонические искажения сетевого напряжения. Конденсатор в цепи постоянного тока служит для уменьшения пульсаций напряжения на аккумуляторах. Это нужно для полной зарядки батареи без протекания через аккумуляторы вредных импульсных токов. Иногда к конденсатору добавляется еще и дроссель, образующий совместно с конденсатором L-C фильтр.

    Коммутационный дроссель ДР уменьшает импульсные токи, возникающие при открытии тиристоров и служит для уменьшения искажений, вносимых выпрямителем в электрическую сеть. Для еще большего снижения искажений, вносимых в сеть, особенно для ИБП большой мощности (более 80-150 кВА) часто применяют 12-импульсные выпрямители. Т.е. за каждый цикл трехфазной сети на входе и выходе выпрямителя возникают 12 импульсов тока. За счет удвоения числа импульсов тока, удается примерно вдвое уменьшить их амплитуду. Это полезно и для аккумуляторов и для электрической сети.

    Двенадцати-импульсный выпрямитель фактически состоит из двух 6-импульсных выпрямителей. На вход второго выпрямителя (он изображен ниже на рис. 18) подается трехфазное напряжение, прошедшее через трансформатор, сдвигающий фазу на 30 градусов.

    В настоящее время применяются также и другие схемы выпрямителей трехфазных ИБП. Например схема с пассивным (диодным) выпрямителем и преобразователем напряжения постоянного тока, применение которого позволяет приблизить потребляемый ток к синусоидальному.

    Наиболее современным считается транзисторный выпрямитель, регулируемый высокочастотной схемой широтно-импульсной модуляции (ШИМ). Применение такого выпрямителя позволяет сделать ток потребления ИБП синусоидальным и совершенно отказаться от 12-импульсных выпрямителей с трансформатором.

    Батарея

    Для формирования батареи трехфазных ИБП (как и в однофазных ИБП) применяются герметичные свинцовые аккумуляторы. Обычно это самые распространенные модели аккумуляторов с расчетным сроком службы 5 лет. Иногда используются и более дорогие аккумуляторы с большими сроками службы. В некоторых трехфазных ИБП пользователю предлагается фиксированный набор батарей или батарейных шкафов, рассчитанных на различное время работы на автономном режиме. Покупая ИБП других фирм, пользователь может более или менее свободно выбирать батарею своего ИБП (включая ее емкость, тип и количество элементов). В некоторых случаях батарея устанавливается в корпус ИБП, но в большинстве случаев, особенно при большой мощности ИБП, она устанавливается в отдельном корпусе, а иногда и в отдельном помещении.

    Инвертор

    Как и в ИБП малой мощности, в трехфазных ИБП применяются транзисторные инверторы, управляемые схемой широтно-импульсной модуляции (ШИМ). Некоторые ИБП с трехфазным выходом имеют два инвертора. Их выходы подключены к трансформаторам, сдвигающим фазу выходных напряжений. Даже в случае применения относительно низкочастоной ШИМ, такая схема совместно с применением фильтра переменного тока, построенного на трансформаторе и конденсаторах, позволяет обеспечить очень малый коэффициент гармонических искажений на выходе ИБП (до 3% на линейной нагрузке). Применение двух инверторов увеличивает надежность ИБП, поскольку даже при выходе из строя силовых транзисторов одного из инверторов, другой инвертор обеспечит работу нагрузки, пусть даже при большем коэффициенте гармонических искажений.

    В последнее время, по мере развития технологии силовых полупроводников, начали применяться более высокочастотные транзисторы. Частота ШИМ может составлять 4 и более кГц. Это позволяет уменьшить гармонические искажения выходного напряжения и отказаться от применения второго инвертора. В хороших ИБП существуют несколько уровней защиты инвертора от перегрузки. При небольших перегрузках инвертор может уменьшать выходное напряжение (пытаясь снизить ток, проходящий через силовые полупроводники). Если перегрузка очень велика (например нагрузка составляет более 125% номинальной), ИБП начинает отсчет времени работы в условиях перегрузки и через некоторое время (зависящее от степени перегрузки – от долей секунды до минут) переключается на работу через статический байпас. В случае большой перегрузки или короткого замыкания, переключение на статический байпас происходит сразу.

    Некоторые современные высококлассные ИБП (с высокочакстотной ШИМ) имеют две цепи регулирования выходного напряжения. Первая из них осуществляет регулирование среднеквадратичного (действующего) значения напряжения, независимо для каждой из фаз. Вторая цепь измеряет мгновенные значения выходного напряжения и сравнивает их с хранящейся в памяти блока управления ИБП идеальной синусоидой. Если мгновенное значение напряжения отклонилось от соотвествующего "идеального" значения, то вырабатывается корректирующий импульс и форма синусоиды выходного напряжения исправляется. Наличие второй цепи обратной связи позволяет обеспечить малые искажения формы выходного напряжения даже при нелинейных нагрузках.

    Статический байпас

    Блок статического байпаса состоит из двух трехфазных (при трехфазном выходе) тиристорных переключателей: статического выключателя инвертора (на схеме – СВИ) и статического выключателя байпаса (СВБ). При нормальной работе ИБП (от сети или от батареи) статический выключатель инвертора замкнут, а статический выключатель байпаса разомкнут. Во время значительных перегрузок или выхода из строя инвертора замкнут статический переключатель байпаса, переключатель инвертора разомкнут. В момент переключения оба статических переключателя на очень короткое время замкнуты. Это позволяет обеспечить безразрывное питание нагрузки.

    Каждая модель ИБП имеет свою логику управления и, соответственно, свой набор условий срабатывания статических переключателей. При покупке ИБП бывает полезно узнать эту логику и понять, насколько она соответствует вашей технологии работы. В частности хорошие ИБП сконструированы так, чтобы даже если байпас недоступен (т.е. отсутствует синхронизация инвертора и байпаса – см. главу 6) в любом случае постараться обеспечить электроснабжение нагрузки, пусть даже за счет уменьшения напряжения на выходе инвертора.

    Статический байпас ИБП с трехфазным входом и однофазным выходом имеет особенность. Нагрузка, распределенная на входе ИБП по трем фазным проводам, на выходе имеет только два провода: один фазный и нейтральный. Статический байпас тоже конечно однофазный, и синхронизация напряжения инвертора производится относительно одной из фаз трехфазной сети (любой, по выбору пользователя). Вся цепь, подводящая напряжение к входу статического байпаса должна выдерживать втрое больший ток, чем входной кабель выпрямителя ИБП. В ряде случаев это может вызвать трудности с проводкой.

    Сервисный байпас

    Трехфазные ИБП имеют большую мощность и обычно устанавливаются в местах действительно критичных к электропитанию. Поэтому в случае выхода из строя какого-либо элемента ИБП или необходимости проведения регламентных работ (например замены батареи), в большинстве случае нельзя просто выключить ИБП или поставить на его место другой. Нужно в любой ситуации обеспечить электропитание нагрузки. Для этих ситуаций у всех трехфазных ИБП имеется сервисный байпас. Он представляет собой ручной переключатель (иногда как-то заблокированный, чтобы его нельзя было включить по ошибке), позволяющий переключить нагрузку на питание непосредственно от сети. У большинства ИБП для переключения на сервисный байпас существует специальная процедура (определенная последовательность действий), которая позволяет обеспечит непрерывность питания при переключениях.

    Режимы работы трехфазного ИБП с двойным преобразованием

    Трехфазный ИБП может работать на четырех режимах работы.

    • При нормальной работе нагрузка питается по цепи выпрямитель-инвертор стабилизированным напряжением, отфильтрованным от импульсов и шумов за счет двойного преобразования энергии.
    • Работа от батареи. На это режим ИБП переходит в случае, если напряжение на выходе ИБП становится таким маленьким, что выпрямитель оказывается не в состоянии питать инвертор требуемым током, или выпрямитель не может питать инвертор по другой причине, например из-за поломки. Продолжительность работы ИБП от батареи зависит от емкости и заряда батареи, а также от нагрузки ИБП.
    • Когда какой-нибудь инвертор выходит из строя или испытывает перегрузку, ИБП безразрывно переходит на режим работы через статический байпас. Нагрузка питается просто от сети через вход статического байпаса, который может совпадать или не совпадать со входом выпрямителя ИБП.
    • Если требуется обслуживание ИБП, например для замены батареи, то ИБП переключают на сервисный байпас. Нагрузка питается от сети, а все цепи ИБП, кроме входного выключателя сервисного байпаса и выходных выключателей отделены от сети и от нагрузки. Режим работы на сервисном байпасе не является обязательным для небольших однофазных ИБП с двойным преобразованием. Трехфазный ИБП без сервисного байпаса немыслим.

    Надежность

    Трехфазные ИБП обычно предназначаются для непрерывной круглосуточной работы. Работа нагрузки должна обеспечиваться практически при любых сбоях питания. Поэтому к надежности трехфазных ИБП предъявляются очень высокие требования. Вот некоторые приемы, с помощью которых производители трехфазных ИБП могут увеличивать надежность своей продукции. Применение разделительных трансформаторов на входе и/или выходе ИБП увеличивает устойчивость ИБП к скачкам напряжения и нагрузки. Входной дроссель не только обеспечивает "мягкий запуск", но и защищает ИБП (и, в конечном счете, нагрузку) от очень быстрых изменений (скачков) напряжения.

    Обычно фирма выпускает целый ряд ИБП разной мощности. В двух или трех "соседних по мощности" ИБП этого ряда часто используются одни и те же полупроводники. Если это так, то менее мощный из этих двух или трех ИБП имеет запас по предельному току, и поэтому несколько более надежен. Некоторые трехфазные ИБП имеют повышенную надежность за счет резервирования каких-либо своих цепей. Так, например, могут резервироваться: схема управления (микропроцессор + платы "жесткой логики"), цепи управления силовыми полупроводниками и сами силовые полупроводники. Батарея, как часть ИБП тоже вносит свой вклад в надежность прибора. Если у ИБП имеется возможность гибкого выбора батареи, то можно выбрать более надежный вариант (батарея более известного производителя, с меньшим числом соединений).

    Преобразователи частоты

    Частота напряжения переменного тока в электрических сетях разных стран не обязательно одинакова. В большинстве стран (в том числе и в России) распространена частота 50 Гц. В некоторых странах (например в США) частота переменного напряжения равна 60 Гц. Если вы купили оборудование, рассчитанное на работу в американской электрической сети (110 В, 60 Гц), то вы должны каким-то образом приспособить к нему нашу электрическую сеть. Преобразование напряжения не является проблемой, для этого есть трансформаторы. Если оборудование оснащено импульсным блоком питания, то оно не чувствительно к частоте и его можно использовать в сети с частотой 50 Гц. Если же в состав оборудования входят синхронные электродвигатели или иное чувствительное к частоте оборудование, вам нужен преобразователь частоты. ИБП с двойным преобразованием энергии представляет собой почти готовый преобразователь частоты.

    В самом деле, ведь выпрямитель этого ИБП может в принципе работать на одной частоте, а инвертор выдавать на своем выходе другую. Есть только одно принципиальное ограничение: невозможность синхронизации инвертора с линией статического байпаса из-за разных частот на входе и выходе. Это делает преобразователь частоты несколько менее надежным, чем сам по себе ИБП с двойным преобразованием. Другая особенность: преобразователь частоты должен иметь мощность, соответствующую максимальному возможному току нагрузки, включая все стартовые и аварийные забросы, ведь у преобразователя частоты нет статического байпаса, на который система могла бы переключиться при перегрузке.

    Для изготовления преобразователя частоты из трехфазного ИБП нужно разорвать цепь синхронизации, убрать статический байпас (или, вернее, не заказывать его при поставке) и настроить инвертор ИБП на работу на частоте 60 Гц. Для большинства трехфазных ИБП это не представляет проблемы, и преобразователь частоты может быть заказан просто при поставке.

    ИБП с горячим резервированием

    В некоторых случаях надежности даже самых лучших ИБП недостаточно. Так бывает, когда сбои питания просто недопустимы из-за необратимых последствий или очень больших потерь. Обычно в таких случаях в технике применяют дублирование или многократное резервирование блоков, от которых зависит надежность системы. Есть такая возможность и для трехфазных источников бесперебойного питания. Даже если в конструкцию ИБП стандартно не заложено резервирование узлов, большинство трехфазных ИБП допускают резервирование на более высоком уровне. Резервируется целиком ИБП. Простейшим случаем резервирования ИБП является использование двух обычных серийных ИБП в схеме, в которой один ИБП подключен к входу байпаса другого ИБП.

    4930

    Рис. 19а. Последовательное соединение двух трехфазных ИБП

    На рисунке 19а приведена схема двух последовательно соединенным трехфазных ИБП. Для упрощения на рисунке приведена, так называемая, однолинейная схема, на которой трем проводам трехфазной системы переменного тока соответствует одна линия. Однолинейные схемы часто применяются в случаях, когда особенности трехфазной сети не накладывают отпечаток на свойства рассматриваемого прибора. Оба ИБП постоянно работают. Основной ИБП питает нагрузку, а вспомогательный ИБП работает на холостом ходу. В случае выхода из строя основного ИБП, нагрузка питается не от статического байпаса, как в обычном ИБП, а от вспомогательного ИБП. Только при выходе из строя второго ИБП, нагрузка переключается на работу от статического байпаса.

    Система из двух последовательно соединенных ИБП может работать на шести основных режимах.

    А. Нормальная работа. Выпрямители 1 и 2 питают инверторы 1 и 2 и, при необходимости заряжают батареи 1 и 2. Инвертор 1 подключен к нагрузке (статический выключатель инвертора 1 замкнут) и питает ее стабилизированным и защищенным от сбоев напряжением. Инвертор 2 работает на холостом ходу и готов "подхватить" нагрузку, если инвертор 1 выйдет из строя. Оба статических выключателя байпаса разомкнуты.

    Для обычного ИБП с двойным преобразованием на режиме работы от сети допустим (при сохранении гарантированного питания) только один сбой в системе. Этим сбоем может быть либо выход из строя элемента ИБП (например инвертора) или сбой электрической сети.

    Для двух последовательно соединенных ИБП с на этом режиме работы допустимы два сбоя в системе: выход из строя какого-либо элемента основного ИБП и сбой электрической сети. Даже при последовательном или одновременном возникновении двух сбоев питание нагрузки будет продолжаться от источника гарантированного питания.

    Б. Работа от батареи 1. Выпрямитель 1 не может питать инвертор и батарею. Чаще всего это происходит из-за отключения напряжения в электрической сети, но причиной может быть и выход из строя выпрямителя. Состояние инвертора 2 в этом случае зависит от работы выпрямителя 2. Если выпрямитель 2 работает (например он подключен к другой электрической сети или он исправен, в отличие от выпрямителя 1), то инвертор 2 также может работать, но работать на холостом ходу, т.к. он "не знает", что с первым ИБП системы что-то случилось. После исчерпания заряда батареи 1, инвертор 1 отключится и система постарается найти другой источник электроснабжения нагрузки. Им, вероятно, окажется инвертор2. Тогда система перейдет к другому режиму работы.

    Если в основном ИБП возникает еще одна неисправность, или батарея 1 полностью разряжается, то система переключается на работу от вспомогательного ИБП.

    Таким образом даже при двух сбоях: неисправности основного ИБП и сбое сети нагрузка продолжает питаться от источника гарантированного питания.

    В. Работа от инвертора 2. В этом случае инвертор 1 не работает (из-за выхода из строя или полного разряда батареи1). СВИ1 разомкнут, СВБ1 замкнут, СВИ2 замкнут и инвертор 2 питает нагрузку. Выпрямитель 2, если в сети есть напряжение, а сам выпрямитель исправен, питает инвертор и батарею.

    На этом режиме работы допустим один сбой в системе: сбой электрической сети. При возникновении второго сбоя в системе (выходе из строя какого-либо элемента вспомогательного ИБП) электропитание нагрузки не прерывается, но нагрузка питается уже не от источника гарантированного питания, а через статический байпас, т.е. попросту от сети.

    Г. Работа от батареи 2. Наиболее часто такая ситуация может возникнуть после отключения напряжения в сети и полного разряда батареи 1. Можно придумать и более экзотическую последовательность событий. Но в любом случае, инвертор 2 питает нагругку, питаясь, в свою очередь, от батареи. Инвертор 1 в этом случае отключен. Выпрямитель 1, скорее всего, тоже не работает (хотя он может работать, если он исправен и в сети есть напряжение).

    После разряда батареи 2 система переключится на работу от статического байпаса (если в сети есть нормальное напряжение) или обесточит нагрузку.

    Д. Работа через статический байпас. В случае выхода из строя обоих инверторов, статические переключатели СВИ1 и СВИ2 размыкаются, а статические переключатели СВБ1 и СВБ2 замыкаются. Нагрузка начинает питаться от электрической сети.

    Переход системы к работе через статический байпас происходит при перегрузке системы, полном разряде всех батарей или в случае выхода из строя двух инверторов.

    На этом режиме работы выпрямители, если они исправны, подзаряжают батареи. Инверторы не работают. Нагрузка питается через статический байпас.

    Переключение системы на работу через статический байпас происходит без прерывания питания нагрузки: при необходимости переключения сначала замыкается тиристорный переключатель статического байпаса, и только затем размыкается тиристорный переключатель на выходе того инвертора, от которого нагрузка питалась перед переключением.

    Е. Ручной (сервисный) байпас. Если ИБП вышел из строя, а ответственную нагрузку нельзя обесточить, то оба ИБП системы с соблюдением специальной процедуры (которая обеспечивает безразрыное переключение) переключают на ручной байпас. после этого можно производить ремонт ИБП.

    Преимуществом рассмотренной системы с последовательным соединением двух ИБП является простота. Не нужны никакие дополнительные элементы, каждый из ИБП работает в своем штатном режиме. С точки зрения надежности, эта схема совсем не плоха:- в ней нет никакой лишней, (связанной с резервированием) электроники, соответственно и меньше узлов, которые могут выйти из строя.

    Однако у такого соединения ИБП есть и недостатки. Вот некоторые из них.
     

    1. Покупая такую систему, вы покупаете второй байпас (на нашей схеме – он первый – СВБ1), который, вообще говоря, не нужен – ведь все необходимые переключения могут быть произведены и без него.
    2. Весь второй ИБП выполняет только одну функцию – резервирование. Он потребляет электроэнергию, работая на холостом ходу и вообще не делает ничего полезного (разумеется за исключением того времени, когда первый ИБП отказывается питать нагрузку). Некоторые производители предлагают "готовые" системы ИБП с горячим резервированием. Это значит, что вы покупаете систему, специально (еще на заводе) испытанную в режиме с горячим резервированием. Схема такой системы приведена на рис. 19б.

    4931

    Рис.19б. Трехфазный ИБП с горячим резервированием

    Принципиальных отличий от схемы с последовательным соединением ИБП немного.

    1. У второго ИБП отсутствует байпас.
    2. Для синхронизации между инвертором 2 и байпасом появляется специальный информационный кабель между ИБП (на рисунке не показан). Поэтому такой ИБП с горячим резервированием может работать на тех же шести режимах работы, что и система с последовательным подключением двух ИБП. Преимущество "готового" ИБП с резервированием, пожалуй только одно – он испытан на заводе-производителе в той же комплектации, в которой будет эксплуатироваться.

    Для расмотренных схем с резервированием иногда применяют одно важное упрощение системы. Ведь можно отказаться от резервирования аккумуляторной батареи, сохранив резервирование всей силовой электроники. В этом случае оба ИБП будут работать от одной батареи (оба выпрямителя будут ее заряжать, а оба инвертора питаться от нее в случае сбоя электрической сети). Применение схемы с общей бетареей позволяет сэкономить значительную сумму – стоимость батареи.

    Недостатков у схемы с общей батареей много:

    1. Не все ИБП могут работать с общей батареей.
    2. Батарея, как и другие элементы ИБП обладает конечной надежностью. Выход из строя одного аккумулятора или потеря контакта в одном соединении могут сделать всю системы ИБП с горячим резервирование бесполезной.
    3. В случае выхода из строя одного выпрямителя, общая батарея может быть выведена из строя. Этот последний недостаток, на мой взгляд, является решающим для общей рекомендации – не применять схемы с общей батареей.


    Параллельная работа нескольких ИБП

    Как вы могли заметить, в случае горячего резервирования, ИБП резервируется не целиком. Байпас остается общим для обоих ИБП. Существует другая возможность резервирования на уровне ИБП – параллельная работа нескольких ИБП. Входы и выходы нескольких ИБП подключаются к общим входным и выходным шинам. Каждый ИБП сохраняет все свои элементы (иногда кроме сервисного байпаса). Поэтому выход из строя статического байпаса для такой системы просто мелкая неприятность.

    На рисунке 20 приведена схема параллельной работы нескольких ИБП.

    4932

    Рис.20. Параллельная работа ИБП

    На рисунке приведена схема параллельной системы с раздельными сервисными байпасами. Схема система с общим байпасом вполне ясна и без чертежа. Ее особенностью является то, что для переключения системы в целом на сервисный байпас нужно управлять одним переключателем вместо нескольких. На рисунке предполагается, что между ИБП 1 и ИБП N Могут располагаться другие ИБП. Разные производителю (и для разных моделей) устанавливают свои максимальные количества параллеьно работающих ИБП. Насколько мне известно, эта величина изменяется от 2 до 8. Все ИБП параллельной системы работают на общую нагрузку. Суммарная мощность параллельной системы равна произведению мощности одного ИБП на количество ИБП в системе. Таким образом параллельная работа нескольких ИБП может применяться (и в основном применяется) не столько для увеличения надежности системы бесперебойного питания, но для увеличения ее мощности.

    Рассмотрим режимы работы параллельной системы

    Нормальная работа (работа от сети). Надежность

    Когда в сети есть напряжение, достаточное для нормальной работы, выпрямители всех ИБП преобразуют переменное напряжение сети в постоянное, заряжая батареи и питая инверторы.

    Инверторы, в свою очередь, преобразуют постоянное напряжение в переменное и питают нагрузку. Специальная управляющая электроника параллельной системы следит за равномерным распределением нагрузки между ИБП. В некоторых ИБП распределение нагрузки между ИБП производится без использования специальной параллельной электроники. Такие приборы выпускаются "готовыми к параллельной работе", и для использования их в параллельной системе достаточно установить плату синхронизации. Есть и ИБП, работающие параллельго без специальной электроники. В таком случае количество параллельно работающих ИБП – не более двух. В рассматриваемом режиме работы в системе допустимо несколько сбоев. Их количество зависит от числа ИБП в системе и действующей нагрузки.

    Пусть в системе 3 ИБП мощностью по 100 кВА, а нагрузка равна 90 кВА. При таком соотношении числа ИБП и их мощностей в системе допустимы следующие сбои.

    Сбой питания (исчезновение напряжения в сети)

    Выход из строя любого из инверторов, скажем для определенности, инвертора 1. Нагрузка распределяется между двумя другими ИБП. Если в сети есть напряжение, все выпрямители системы работают.

    Выход из строя инвертора 2. Нагрузка питается от инвертора 3, поскольку мощность, потребляемая нагрузкой меньше мощности одного ИБП. Если в сети есть напряжение, все выпрямители системы продолжают работать.

    Выход из строя инвертора 3. Система переключается на работу через статический байпас. Нагрузка питается напрямую от сети. При наличии в сети нормального напряжения, все выпрямители работают и продолжают заряжать батареи. При любом последующем сбое (поломке статического байпаса или сбое сети) питание нагрузки прекращается. Для того, чтобы параллельная система допускала большое число сбоев, система должна быть сильно недогружена и должна включать большое число ИБП. Например, если нагрузка в приведенном выше примере будет составлять 250 кВА, то система допускает только один сбой: сбой сети или поломку инвертора. В отношении количества допустимых сбоев такая система эквивалентна одиночному ИБП. Это, кстати, не значит, что надежность такой параллельной системы будет такая же, как у одиночного ИБП. Она будет ниже, поскольку параллельная система намного сложнее одиночного ИБП и (при почти предельной нагрузке) не имеет дополнительного резервирования, компенсирующего эту сложность.

    Вопрос надежности параллельной системы ИБП не может быть решен однозначно. Надежность зависит от большого числа параметров: количества ИБП в системе (причем увеличение количества ИБП до бесконечности снижает надежность – система становится слишком сложной и сложно управляемой – впрочем максимальное количество параллельно работающих модулей для известных мне ИБП не превышает 8), нагрузки системы (т.е. соотношения номинальной суммарной мощности системы и действующей нагрузки), примененной схемы параллельной работы (т.е. есть ли в системе специальная электроника для обеспечения распределения нагрузки по ИБП), технологии работы предприятия. Таким образом, если единственной целью является увеличение надежности системы, то следует серьезно рассмотреть возможность использование ИБП с горячим резервированием – его надежность не зависит от обстоятельств и в силу относительной простоты схемы практически всегда выше надежности параллельной системы.

    Недогруженная система из нескольких параллельно работающих ИБП, которая способна реализвать описанную выше логику управления, часто также называется параллельной системой с резервированием.

    Работа с частичной нагрузкой

    Если нагрузка параллельной системы такова, что с ней может справиться меньшее, чем есть в системе количество ИБП, то инверторы "лишних" ИБП могут быть отключены. В некоторых ИБП такая логика управления подразумевается по умолчанию, а другие модели вообще лишены возможности работы в таком режиме. Инверторы, оставшиеся включенными, питают нагрузку. Коэффициент полезного действия системы при этом несколько возрастает. Обычно в этом режиме работы предусматривается некоторая избыточность, т.е. количестов работающих инверторов больше, чем необходимо для питания нагрузки. Тем самым обеспечивается резервирование. Все выпрямители системы продолжают работать, включая выпрямители тех ИБП, инверторы которых отключены.

    Работа от батареи

    В случае исчезновения напряжения в электрической сети, параллельная система переходит на работу от батареи. Все выпрямители системы не работают, инверторы питают нагрузку, получая энергию от батареи. В этом режиме работы (естественно) отсутствует напряжение в электрической сети, которое при нормальной работе было для ИБП не только источником энергии, но и источником сигнала синхронизации выходного напряжения. Поэтому функцию синхронизации берет на себя специальная параллельная электроника или выходная цепь ИБП, специально ориентированная на поддержание выходной частоты и фазы в соответствии с частотой и фазой выходного напряжения параллельно работающего ИБП.

    Выход из строя выпрямителя

    Это режим, при котором вышли из строя один или несколько выпрямителей. ИБП, выпрямители которых вышли из строя, продолжают питать нагрузку, расходуя заряд своей батареи. Они выдает сигнал "неисправность выпрямителя". Остальные ИБП продолжают работать нормально. После того, как заряд разряжающихся батарей будет полностью исчерпан, все зависит от соотношения мощности нагрузки и суммарной мощности ИБП с исправными выпрямителями. Если нагрузка не превышает перегрузочной способности этих ИБП, то питание нагрузки продолжится (если у системы остался значительный запас мощности, то в этом режиме работы допустимо еще несколько сбоев системы). В случае, если нагрузка ИБП превышает перегрузочную способность оставшихся ИБП, то система переходит к режиму работы через статический байпас.

    Выход из строя инвертора

    Если оставшиеся в работоспособном состоянии инверторы могут питать нагрузку, то нагрузка продолжает работать, питаясь от них. Если мощности работоспособных инверторов недостаточно, система переходит в режим работы от статического байпаса. Выпрямители всех ИБП могут заряжать батареи, или ИБП с неисправными инверторами могут быть полностью отключены для выполнения ремонта.

    Работа от статического байпаса

    Если суммарной мощности всех исправных инверторов параллельной системы не достаточно для поддержания работы нагрузки, система переходит к работе через статический байпас. Статические переключатели всех инверторов разомкнуты (исправные инверторы могут продолжать работать). Если нагрузка уменьшается, например в результате отключения части оборудования, параллельная система автоматически переключается на нормальный режим работы.

    В случае одиночного ИБП с двойным преобразованием работа через статический байпас является практически последней возможностью поддержания работы нагрузки. В самом деле, ведь достаточно выхода из строя статического переключателя, и нагрузка будет обесточена. При работе параллельной системы через статический байпас допустимо некоторое количество сбоев системы. Статический байпас способен выдерживать намного больший ток, чем инвертор. Поэтому даже в случае выхода из строя одного или нескольких статических переключателей, нагрузка возможно не будет обесточена, если суммарный допустимый ток оставшихся работоспособными статических переключателей окажется достаточен для работы. Конкретное количество допустимых сбоев системы в этом режиме работы зависит от числа ИБП в системе, допустимого тока статического переключателя и величины нагрузки.

    Сервисный байпас

    Если нужно провести с параллельной системой ремонтные или регламентные работы, то система может быть отключена от нагрузки с помощью ручного переключателя сервисного байпаса. Нагрузка питается от сети, все элементы параллельной системы ИБП, кроме батарей, обесточены. Как и в случае системы с горячим резервированием, возможен вариант одного общего внешнего сервисного байпаса или нескольких сервисных байпасов, встроенных в отдельные ИБП. В последнем случае при использовании сервисного байпаса нужно иметь в виду соотношение номинального тока сервисного байпаса и действующей мощности нагрузки. Другими словами, нужно включить столько сервисных байпасов, чтобы нагрузка не превышала их суммарный номинальных ток.
    [ http://www.ask-r.ru/info/library/ups_without_secret_7.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > трехфазный источник бесперебойного питания (ИБП)

  • 19 двигатель



    - (газотурбинный, поршневой, тепловой) — engine
    - (гидравлический, пневматический, электрический) — motor
    -, авиационный — aircraft engine
    двигатель, используемый или предназначенный к использованию в авиации для перемещения и (или) поддержания ла, на котором он установлен, в воздухе (рис. 46). — an engine that is used or intended to be used in propelting or lifting aircraft.
    - аналогичной конструкцииengine of identical design and сonstruction
    - без наддува (ид)unsupercharged engine
    -, безредукторный — direct-drive engine
    -, безредукторный винто-вентиляторный (незакопоченный) — unducted fan engine (udf)
    винтовентиляторы вращаются непосредственно силовой (свободной) турбиной с противоположным вращением рабочих колес. — fans are driven directly by a counter-rotating turbine, eliminating complexity of a reduction gearbox.
    -, бензиновый — gasoline engine
    -, боковой (рис. 13) — side engine
    - в подвесной мотогондолеpod engine
    -, вентиляторный, с противоположным вращением вентиляторов — contrafan engine
    - вертикальной наводки, приводной (стрелкового вооружения) — (gun) elevation drive motor
    -, винто-вентиляторный (тввд) — prop-fan engine
    -, включенный (работающий) — operating/running/engine
    -, внешний (по отношению к фюзеляжу) (рис. 44) — outboard engine
    - внутреннего сгоранияinternal-combustion engine
    -, внутренний (по отношению к наружному двигателю) (рис. 44) — inboard engine
    - воздушного охлаждения (пд)air-cooled engine
    двигатель, у которого отвод тепла от цилиндров производится воздухом, непосредственно обдувающим их. — an engine whose running temperature is controlled by means of air cooled cylinders.
    -, вспомогательный (всу) — auxiliary power unit (apu)
    -, выключенный — shutdown engine
    -, выключенный (неработающий) — inoperative engine
    -, высокооборотный — high-speed engine
    -, высотный — high-altitude engine
    -, газотурбинный (гтд) — turbine engine
    -, газотурбинный (вертолетныи) — helicopter turboshaft engine
    -,газотурбинный-энергоузел (стартер-энергоузел) — turbine-starter - auxiliary power unit, starter - apu
    - (-) генераторmotor-generator
    устройство для преобразования одного вида эл. энергии в другую (напр., переменный ток в постоянный). — а motor-generator combination for converting one kind of electric power to another (e.g. ас to dc)
    - горизонтальной наводки, приводной (стрелкового вооружения) — (gun) azimuth drive motor
    - двухвальной схемы (турбовальный)two-shaft turbine engine
    -, двухвальный турбовинтовой — two-shaft turboprop engine
    -, двухвальный турбореактивный — two-shaft /-rotor, -spool/turbojet engine
    -, двухкаскадный — two-rotor /-shaft, -spool/ engine, twin-spool engine
    двухвальный турбореактивный двигатель называется также двухроторным или двухкаскадным двигателем. — а two-rotor engine is a twoshaft or two-spool engine with lp and hp compressors and hp and lp turbines.
    -, двухкаскадный, двухконтурный, (турбореактивный) — two-rotor /twin-spool/ by-pass turbo-jet engine
    -, двухкаскадный, турбовальный, газотурбинный, со свободной турбиной — two-rotor /twin-spool/ turboshaft engine with free-power turbine
    -, двухкаскадный, турбовентиляторвый с устройством отклонения направления тяги — two-rotor /twin-spool/ turbofan engine with thrust deflector system
    -, двухконтурный — by-pass /bypass/ engine
    гтд, в котором, помимо основного внутреннего (первого) контура, имеется наружный (второй) контур, представляющий собой канал кольцевого сечения, оканчивающийся у реактивного сопла. — in а by-pass engine, a part of the air leaving the lp cornpressor is dueted through the by-pass duct around the engine main duct to the exhaust unit to be exhausted to the atmosphere.
    -, двухконтурный с дожиганиem во втором контуре — duct-burning by-pass engine
    -, двухконтурный со смешиванием потоков наружного и и внутренного контуров — by-pass exhaust mixing engine
    -, двухроторный — two-rotor engine
    - двухрядная звезда (пд)double-row radial engine
    двигатель, у которого цнлиндры расположены двумя рядами радиально относительнo одного oбщего коленчатоro вала. — an engine having two rows of cylinders arranged radially around а common crankshaft. the corresponding front and rear cylinders may or may not be in line.
    -, двухтактный (пд) — two-cycle engine
    -, дозвуковой — subsonic engine
    -, доработанный по модификации (1705) — engine incorporating mod. (1705), post-mod. (1705) engine
    -, звездообразный — radial engine
    поршневой двигатель с радиальным расположением цилиндров, оси которых лежат в одной, двух или нескольких плоскостях, перпендикулярных к оси коленчатого вала — an engine having stationary cylinders arranged radially around а commom crankshaft.
    -, звездообразный двухрядный — double-row radial engine
    -, звездообразный однорядный — single-row radial engine
    -, исполнительный (эл.) — (electric) actuator, servo motor
    -, исполнительный, канала курса (крена или тангажа) (гироплатформы) — azimuth (roll or pitch) servornotor
    -, карбюраторный (пд) — carburetor engine
    -, коррекционный (гироскопического прибора) — erection torque motor
    -, критический — critical engine
    двигатель, отказ которого вызывает наиболее неблагоприятные изменения в поведении самолета, управляемости и избытке тяги. — "critical engineп means the engine whose failure would most adversely affect the performance or handling qualities of an aircraft.
    -, крыльевой (установленный на крыле) — wing engine
    - левого вращенияengine of lh rotation
    -, маломощный — low-powered engine
    -, многорядный (пд) — multirow engine
    -, многорядный звездообразный — multirow radial engine
    -, модифицированный — modified engine
    - модульной конструкцииmodule-construction engine

    lp compressor - module i, hp compressor - module 2, etc.
    -, мощный — high-powered engine
    -, недоработанный no модификацин (1705) — engine not incorporating mod. (1705), pre-mod. (1705) engine
    -, незакапоченный — uncowled engine
    - непосредственного впрыска (пд)fuel injection engine
    -, неработающий — inoperative engine
    -, одновальный (гтд) — single-shaft /single-rotor/ turbine engine
    -, одновальный двухконтурный — single-shaft /single-rotor/ bypass engine
    -, одновальный турбовентиляторный — single-shaft /single-rotor/ turbofan engine
    -, одновальный турбовинтовой — single-shaft turboprop engine
    -, одновальный турбореактивный — single-shaft /single-rotor/turbojet engine
    -, однорядный (пд) — single-row engine
    -, опытный — prototype engine
    двигатель определенного тиna, еще не прошедший типовые государственные испытания. — the tirst engine of a type and arrangement not approved previously, to be submitted for type approval test.
    -, основной — main engine
    -, оставшийся (продолжающий работать) — remaining engine
    -, отказавший — inoperative/failed/ engine
    - отработки (эл., исполнительный) — servomotor
    - отработки следящей системыservo loop drive motor
    - подтяга (патронной ленты)ammunition booster torque motor
    -, поперечный коррекционный (авиагоризонта) — roll erection torque motor
    -, поршневой (пд) — reciprocating engine
    - правого вращенияengine of rh rotation
    -, продольный коррекционный (авиагоризонта) — pitch erection torque motor
    -, прямоточный — ramjet engine
    двигатель без механического компрессора, в котором сжатие воздуха обеспечивается поступательным движением самого двигателя. — а jet engine with no meehanical compressor, and using the air for combustion compressed by forward motion of the engine.
    - работающийoperating engine
    -, работающий с перебоями — rough engine
    двигатель, работающий с неисправной системой зажигания или подачи топлива (рабочей смеси) — an engine that is running or firing unevenly, usually due to а faulty condition in either the fuel or ignition systems.
    - рамы крена (гироплатформыroll-gimbal servomotor
    - рамы курса (гироплатформыazimuth-gimbal servomotor
    - рамы тангажа (гироплатформы)pitch-gimbal servomotor
    -, реактивный — jet-engine
    двигатель, в котором энергия топлива преобразуется в кинетическую энергию газовой струи, вытекающей из двигателя, a получающаяся за счет этого сила реакции нenоcредственно используется как сила тяги для перемещения летательного аппарата. — an aircraft engine that derives all or most of its thrust by reaction to its ejection of combustion products (or heated air) in a jet and that obtains oxygen from the atmosphere for the combustion of its fuel.
    -, реактивный, пульсирующий — pulse jet (engine)
    применяется для непосредственного вращения несущеro винта вертолета. — pulse jets are designed for helicopter rotor propulsion.
    -, ремонтный — overhauled engine
    серийный двигатель, отремонтированный или восстановленный до состояния, удовлетворяющего требованиям серийного стандарта, и пригодный для дальнейшей эксплуатации в течение установленного межремонтного ресурса. — an engine which has been repaired or reconditioned to а standard rendering it eligible for the complete overhaul life agreed by the national authority.
    - с внешним смесеобразованием (пд)carburetor engine
    двигатель внутреннего сгорания, у которого горючая смесь образуется вне рабочего цилиндра. — an engine in which the fuel/air mixture is formed in the carburetor.
    - с внутренним смесеобразованиемfuel-injection engine
    двигатель, у которого горючая смесь образуется внутри рабочего цилиндра. — an engine in which fuel is directly injected into the cylinders.
    - с водяным охлаждением (пд)water-cooled engine
    - с высокой степенью сжатияhigh-compression engine
    - с нагнетателем (пд)supercharged engine
    - с наддувом (пд) с осевым компрессором (пд)supercharged engine axial-flom turbine engine
    - с передним расположением вентилятораfront fan turbine engine
    - с противоточной камерой сгорания (гтд)reverse-flow turbine engine
    - с редукторомengine with reduction gear
    - с форсажной камерой (гтд). двигатель с дополнительным сжиганием топлива в специальной камере за турбиной — engine with afterburner, afterburning engine, reheat(ed) engine, engine with thrust augmentor
    - с форсированной (взлетной) мощностьюengine with augmented (takeoff) power rating
    - с центробежным компрессором (гтд)radial-flow turbine engine
    -, серийный — series engine
    двигатель, изготовляемый в серийном производстве и соответствующий опытному двигателю, принятому при государственных испытаниях для серийного производства. — an engine essentially identiin design, in materials, and in methods of construction, with one which has been approved previously.
    - со свободной турбинойfree-luroine engine
    двигатель с двумя турбинами, валы которых кинематически не связаны. одна из турбин обычно служит для привода компрессора, а другая используется для передачи полезной работы потребителю, например, воздушному (или несущему) винту. — the engine with two turbines whose shafts are not mechanically coupled. one turbine drives the compressor, and the other free turbine drives the propeller or rotor.
    - следящей системы по внутреннему крену (гироплатформы)inner roll gimbal servomotor
    - следящей системы по наружному крену (гироплатформы)outer roll gimbal servomotor
    - следящей системы по курсу (гироплатформы)azimuth gimbal servomotor
    - следящей системы по тангажу (гироплатформы)pitch gimbal servomotor
    -, собственно — engine itself
    -, средний (рис. 44) — center engine
    - стабилизации гироплатформы — stable platform-stabilization servomotor/servo/
    -, стартовый (работающий при взлете) — booster
    -, стартовый твердотопливный — solid propellant booster
    -, трехкаскадный, турбореактивный, с передним вентилятором — three-rotor /triple-spool, triple shaft/ front fan turbo-jet engine
    -, турбовентиляторный — turbofan engine
    двухконтурный турбореактивный двигатель, в котором часть воздуха выбрасывается за первыми ступенями компрессора низкого давления, а остальная часть воздуха за кнд поступает в основной контур с камерами сгорания. — in the turbofan engine a part of the air bypassed and exhausted to atmosphere after the first (two) stages of lp compressor. about half of the thrust is produced by the fan exhaust.
    -, турбовентиляторный (с дожиганием в вентиляторном контуре) — duct-burning turbofan engine
    -, турбовинтовентиляторный — (turbo) propfan engine, unducted fan engine (ufe)
    -, турбовинтовой (твд) — turboprop engine
    газотурбинный двигатель, в котором тепло превращается в кинетическую энергию реактивной струи и в механическую работу на валу двигателя, которая используется для вращения воздушного винта. — а turboprop engine is a turbine engine driving the propeller and developing an additional propulsive thrust by reaction to ejection of combustion products.
    -, "турбовинтовой" (вертолетный, с отбором мощности на вал) — turboshaft engine
    -, турбовинтовой, с толкающим винтом — pusher-turboprop engine
    -, турбопрямоточный — turbo/ram jet engine
    комбинация из турбореактивного (до м-з) и прямоточного (для больших чисел м). — combines а turbo-jet engine (for speeds up to mach 3) and ram jet engine for higher mach numbers.
    -,турбо-ракетный — turbo-rocket engine
    аналог турбопрямоточному двигателю с автономным кислородным питанием, — а turbo/ram jet engine with its own oxygen to provide combustion.
    -, турбореактивный — turbojet engine
    газотурбинный двигатель (с приводом компрессора от турбин), в котором тепло превращается только в кинетическую энергию реактивной струи. — a jet engine incorporating a turbine-driven air compressor to take in and compress the air for the combustion of fuel, the gases of combustion being used both to rotate the turbine and to create a thrust-producing jet.
    -, установленный в мотогондоле — nacelle-mounted engine
    -, установленный в подвесной мотогондоле — pod engine
    -, четырехтактный (поршневой — four-cycle engine
    за два оборота коленчатого вала происходит четыре хода поршня в каждом цилиндре, по одному такту на ход. такт 1 - впуск всасывание рабочей смеси в цилиндр), такт 2 - матке рабочей смеси, такт 3 - рабочий ход (зажигание смеси), такт 4 - выхлоп (выпуск отработанных газов из цилиндра в атмосферу) — a common type of engine which requires two revolutions of the crankshaft (four strokes of the piston) to complete the four events of (1) admission of or forcing the charged mixture of combustible gas into the cylinder, (2) compression of the charge, (3) ignition and burning of the charge, which develops pressure (power) acting on the piston and (4) exhaust or expulsion of the charge from the cylinder.
    -, шаговой (эл.) — step-servo motor
    -, электрический — electric motor
    устройство, преобразующее электрическую энергию во вращательное механическое движение. — device which converts electrical energy into rotating mechanical energy.
    - (-) энергоузел, газотурбинный (ггдэ) — turbine starter /auxiliary power unit, starter/ apu
    для запуска основн. двигателей, хол. прокрутки (стартерный режим) и привода агрегатов самолета при неработающих двигателях (режим энергоузла), имеет свой электростартер.
    в зоне д. — in the region of the engine
    выбег д. — engine run-down
    гонка д. — engine run
    данные д. — engine data
    заливка д. (пд перед запуском) — engine priming
    замена д. — engine replacement /change/
    запуск д. — engine start
    испытание д. — engine test
    мощность д. — engine power
    на входе в д. — at /in/ inlet to the engine
    обороты д. — engine speed /rpm, rpm/
    опробование д. — engine ground test
    опробование д. в полете — in-flight engine test
    опробование д. на земле — engine ground test
    останов д. (выключение) — engine shutdown
    остановка д. (отказ) — engine failure
    остановка д. (выбег) — run down
    остановка д. вслествие недостатка масла (топлива) — engine failure due to oil (fuel) starvation
    отказ д. — engine failure
    перебои в работе д. — rough engine operation
    подогрев д. — engine heating
    проба д. (на земле) — engine ground test
    прогрев д. — engine warm-up
    прокрутка д. (холодная) — engine cranking /motoring/
    работа д. — engine operation
    разгон д. — engine acceleration
    стоянка д. (период, в течение которого двигатель не работает) — engine shutdown. one hundred starts must be made of which 25 starts must be preceded by at least a two-hour engine shutdown.
    тряска д. — engine vibration
    тяга д. — engine thrust
    установка д. — engine installation
    шум д. — engine noise
    вывешивать д. с помощью лебедки — support weight of the engine by a hoist
    выводить д. на требуемые обороты % — accelerate the engine to a required speed of %
    выключать д. — shut down the engine
    глушить д. — shut down the engine
    гонять д. — run the engine
    заливать д. (пд) — prim the engine
    заменять д. — replace the engine
    запускать д. — start the engine
    запускать д. в воздухе — (re)start the engine
    испытывать д. — test the engine
    опробовать д. на земле — ground test the engine
    останавливать д. — shut down the engine
    подвешивать д. — mount the engine
    поднимать д. подъемником — hoist the engine
    подогревать д. — heat the engine
    проворачивать д. на... оборотов — turn the engine... revolutions
    прогревать д. (на оборотах...%) — warm up the engine (at a speed of... %)
    продопжать полет на (двух) д. — continue flight on (two) engines
    разгоняться на одном д. — accelerate with one engine operating
    разгоняться при неработающем критическом д. — accelerate with the critical епgine inoperative
    сбавлять (убирать) обороты (работающего) д. — decelerate the engine
    увеличивать обороты (работающего) д. — accelerate the engine
    устанавливать д. — install the engine

    Русско-английский сборник авиационно-технических терминов > двигатель

  • 20 троичный парный код

    1. PST
    2. Pair Selected Ternary code

     

    троичный парный код
    Метод кодирования, при котором пара двоичных битов (1, 0) преобразуется в два троичных сигнала (+, 0, -), а полученная избыточность используется для увеличения помехоустойчивости. Два троичных кода образуют 9 кодовых комбинаций, из которых в PST исключаются три кода с повторяющимися символами (++, 00, --). Оставшиеся 6 кодовых слов передаются с использованием двух режимов, условно названных “режим +” и “режим -” (см. табл. Р-6). Переключение с одного режима на другой происходит при очередной передаче одиночного импульса.

    Таблица Р-6. Схема преобразования двоичных пар кодов в троичные
    5190

    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

    Русско-английский словарь нормативно-технической терминологии > троичный парный код

См. также в других словарях:

  • режим преобразования —  Transduction Mode  (Direct or Indirect)  Режим преобразования (прямой или непрямой)   Принцип, в соответствии с которым сенсор воспринимает необходимую информацию от материала. В целом, определяет способность сигнала сенсора обеспечить… …   Толковый англо-русский словарь по нанотехнологии. - М.

  • режим преобразования цветов между цветовыми пространствами — Если необходимо преобразовать изображение из одного цветового пространства в другое (при условии, что цветовой охват этих пространств не совпадает), режим преобразования определяет, какие характеристики цвета будут сохранены ценой потери других:… …   Справочник технического переводчика

  • режим импульсного преобразования (в источниках питания) — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN switching mode …   Справочник технического переводчика

  • режим прямого преобразования энергии — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN direct energy conversion operation …   Справочник технического переводчика

  • режим реальной (абсолютной) адресации — Режим работы процессора, при котором отключены средства преобразования виртуальных адресов в физические. [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики информационные технологии в целом EN… …   Справочник технического переводчика

  • режим ввода — Способ ввода данных. Различают ввод отдельными словами, блоками (записями), потоковый, ввод, управляемый данными, списком данных, ввод с преобразованием данных и без преобразования. [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по… …   Справочник технического переводчика

  • режим — 36. режим [частота вращения] «самоходности»: Режим [минимальная частота вращения выходного вала], при котором газотурбинный двигатель работает без использования мощности пускового устройства при наиболее неблагоприятных внешних условиях. Источник …   Словарь-справочник терминов нормативно-технической документации

  • режим работы — 3.3.2 режим работы наладка (machining mode): Режим работы, при котором оператор осуществляет настройку последующих производственных процессов. Программирование, испытание и работа станка осуществляются при ручном управлении (при включенном… …   Словарь-справочник терминов нормативно-технической документации

  • Режим — Слово режим (фр. regime от лат. regimen управление) используется в нескольких значениях. 1. Чётко установленный порядок, распорядок: Режим дня точно размеренный распорядок действий на день. Режим работы откорректированный порядок работы и отдыха… …   Википедия

  • Режим (значения) — Содержание 1 Для человека 2 В государстве 3 В на …   Википедия

  • режим работы «на себя» — 3.1.6 режим работы «на себя»: Режим работы УПС ТЧР, при котором выход модулятора соединен с входом демодулятора. Источник …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»